The Real Effects of Climate Volatility Shocks

Sofia Sanchez Alegre¹ Hernán D. Seoane¹

¹Universidad Carlos III de Madrid

Motivation I

Table 1: Billion-Dollar Disaster Statistics

Period	Events	Avg Cost (% GDP)	Max Cost (% GDP)	Total Cost (% GDP)
1980-1989	33	0.05	0.48	0.17
1990-1999	57	0.04	0.36	0.21
2000-2009	67	0.05	0.99	0.31
2010-2019	131	0.03	0.69	0.42
2020-2023	88	0.02	0.45	0.51

Note: Source: NOAA National Centers for Environmental Information (2024).

▶ The frequency and costs of extreme events are rising, increasing uncertainty.

Motivation II

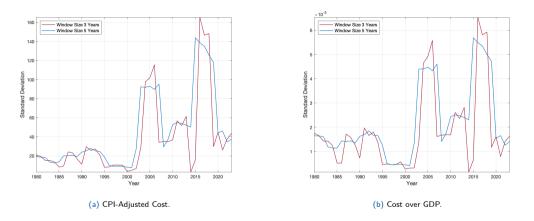


Figure 1: Rolling window standard deviations of climate costs

▶ The costs of climate-related disaster events exhibit a time-varying volatility.

This paper

▶ Strong consensus on the impact of climate change on economic activity.

▶ In this paper, we quantify the real effects of the risk of climate damages.

▶ We do not take a stance on the source of damage volatility changes. This assumption builds on a large tradition that assumes volatility changes as exogenous to isolate its importance (Fernandez-Villaverde et al. (2011)).

The model

DSGE model with carbon cycle and climate shocks with stochastic volatility.

Extend Golosov et al. (2014): RBC with energy and climate risk.

The economy is populated by:

- ► Households,
- ▶ Final good producer,
- ▶ Energy firms producers: fossil and green energy.

Households

A representative household seeks to maximize:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{\left(C_t - \psi N_t^{\theta} X_t\right)^{1-\sigma} - 1}{1-\sigma}$$

where $X_t = C_t^{\eta} X_{t-1}^{1-\eta}$, subject to budget constraints,

$$C_t + I_t + B_{t+1} = r_t K_t + w_t N_t + (1 + r_{t-1}^b) B_t, \ \forall t$$

and the law of motion of capital,

$$\mathcal{K}_{t+1} = \left[1 - rac{\Phi}{2} \left(rac{I_t}{I_{t-1}} - 1
ight)^2
ight]I_t + (1 - \delta)\mathcal{K}_t, \ \ orall t.$$

Eq. conditions

Final good producer

$$\Pi_{0,t} \equiv \max_{\mathcal{K}_{0,t}, \mathcal{N}_{0,t}, \mathsf{E}_{0,t}} (1-D_t) F_{0,t}(\mathcal{K}_{0,t}, \mathcal{N}_{0,t}, \mathsf{E}_{0,t}) - r_t \mathcal{K}_{0,t} - w_t \mathcal{N}_{0,t} - \sum_{i=1}^{I} p_{i,t} \mathsf{E}_{0,t}$$

Where:

- $F_{0,t}(K_{0,t},N_{0,t},\mathbf{E}_{0,t}) = A_{0,t}K_t^{\alpha}N_{0,t}^{(1-\alpha-\nu)}\mathbf{E}_{0,t}^{\nu}$
- $ightharpoonup A_{0,t}$ follows an AR(1) process.
- $\blacktriangleright \mathbf{E}_{0,t} = \left(\kappa E_{g,t}^{\rho} + (1-\kappa) E_{f,t}^{\rho}\right)^{1/\rho}$
- \triangleright D_t is a function of S_t : atmospheric carbon concentration

Carbon depreciation structure

$$S_t - \bar{S} = \sum_{s=0}^t (1 - d_s) \xi E_{f,t-s},$$

Where:

- ▶ $d_s \in [0,1]$ for all s
- ▶ \bar{S} is the pre-industrial atmospheric CO_2 concentration.

Carbon depreciation structure: $(1-d_s)=arphi_0(1-arphi)^s$

▶ Then, S_t :

$$S_t - \bar{S} = \varphi_0 \xi E_{f,t} + (1 - \varphi)(S_{t-1} - \bar{S})$$

Damage function

Following Golosov et al. (2014), that approximates Nordhaus formulation of damage costs,

$$(1-D_t(S_t))=e^{-\gamma_t(S_t-\bar{S})}$$

- Suggestive evidence: damage costs are volatile and their volatility also varies over time.
 - $\diamond \ \gamma_t$ and σ_t follow AR(1) processes:

$$\begin{split} \log(\gamma_t) &= (1 - \rho_\gamma) \log(\bar{\gamma}) + \rho_\gamma \log(\gamma_{t-1}) + \exp(\sigma_t^\gamma) \epsilon_t^\gamma \\ \\ \sigma_t^\gamma &= (1 - \rho_\sigma) \bar{\sigma}^\gamma + \rho_\sigma \sigma_{t-1}^\gamma + \sigma_t^\sigma \epsilon_t^\sigma \end{split}$$

Energy firms

- ► Two primary sectors:
 - Fossil
 - ⋄ Green
- ▶ Each period, they hire labor to produce:

$$E_{i,t} = A_{i,t} N_{i,t}$$
 for $i = f, g$

Where:

- $ightharpoonup A_{i,t}$ is the exogenous productivity for each sector $i=\mathit{f}$, g ;
- each $A_{i,t}$ follows independent AR(1) process.

- Quarterly model US economy: in the literature this has some limitations (some important factors are global).
- ▶ Data from 1980Q1 to 2023Q3.
- ▶ We calibrate the model to match the business cycle of the US economy together with the energy consumption and the evolution of the stock of carbon in the atmosphere.
- Use the production function to recover the Solow Residual,

$$SR_t = (1 - D_t)A_{0,t} = Y_t - K_t^{\alpha} N_{0,t}^{(1 - \alpha - \nu)} \mathbf{E_{0,t}}^{\nu}.$$
 (1)

Prior: information about damage cost and the CO2 accumulation and the measurement of SR in the data can help us identify the different components.

Table 2: Parametrization based on existing literature

Parameter	Value	Target/source
β	$0.985^{1/4}$	Nakov-Thomas (2023)
σ	2	Standard
ψ	1	$Target\ avg.\ labor = 1$
δ	0.0073	Target stock of capital
α	0.3	Standard
u	0.057	EIA(2023)
ho	0.65	Nakov-Thomas (2023)
κ	0.2571	Nakov-Thomas (2023)
$ar{\gamma}$	0.000024	Golosov et al (2014)
<u>5</u>	581	Golosov et al (2014)
ξ	0.879	Nakov-Thomas (2023)
$ar{ar{A_0}}$	9.94	Target Solow residual

Table 3: Calibrated coefficients

Parameter	Description	Value
ρ_{A_0}	Persistence of the TFP shock	0.94
σ_{A_0}	Volatility of the TFP shock	0.0022
$ ho_{\gamma}$	Persistence of the Damage elasticity	0.897
$ar{\sigma_{\gamma}}$	Avg. volatility of the Damage elasticity	0.4
$ ho_{\sigma_{\gamma}}$	Persistence of volatility shocks	0.97
$\sigma_{\sigma_{\gamma}}$	Std dev of the volatility shock	0.42
$ar{\mathcal{A}_f}$	Avg. productivity of fossil energy production	45
$ ho_{A_f}$	Persistence of fossil energy productivity	0.91
σ_{A_f}	Volatility of fossil energy productivity	0.0075
$ar{A_{m{g}}}$	Avg. productivity of green energy production	169
$ ho_{A_g}$	Persistence of green energy productivity	0.97
$\sigma_{A_{m{g}}}$	Volatility of green energy productivity	0.0121
ϕ	Carbon depreciation structure	0.0464
ϕ_0	Carbon depreciation structure	0.2963
Φ	Investment adjustment cost	3.5
θ	Inverse Frisch Elasticity	1.2
η	Preference parameter	0.0055

Table 4: Targeted Moments

Moment	Data	Model
$\mathbb{E}(S)$	6.6	6.4
$\mathbb{E}(cost/Y)$	0.003	0.002
$\mathbb{E}(SR)$	2.3	2.3
$\sigma(Y)$	4.8	4.8
$\sigma(I)$	11.0	7.2
$\sigma(S)$	0.5	0.1
$\sigma(SR)$	2.0	1.6
$\sigma(N)$	5.2	4.9
$\sigma(E_0)$	5.6	5.5
$\sigma(E_f)$	6.6	6.6
$\sigma(E_g)$	12.4	12.4
$\sigma(cost/Y)$	0.6	1.5
$\rho(Y,N)$	86.9	95.0
$\rho(Y,SR)$	72.9	82.6
$\rho(Y, E_0)$	88.2	88.1
$\rho(SR, E_0)$	52.5	56.3
$\rho(SR, E_{0,-1})$	53.4	51.8
$\rho(E_0, N)$	83.0	92.2
$\rho(Y, Y_{-1})$	0.97	0.97
$\rho(E_f, E_{f,-1})$	0.93	0.92
$\rho(E_g, E_{g,-1})$	0.97	0.96

Note: Standard deviations and correlations in percent.

Generalized Impulse Responses

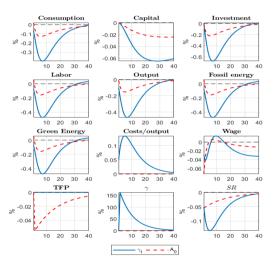


Figure 2: GIRFs to a one standard deviation shock to climate damage and TFP.

Note: Impulse response functions are presented in percent deviation from the steady state.

Generalized Impulse Responses

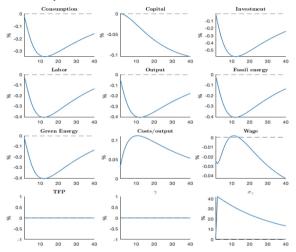


Figure 3: GIRFs to a one standard deviation shock to the volatility of climate damage.

Note: Impulse response functions are presented in percent deviation from the steady state.

Quantitative Analysis

- ▶ Comparing a 1 s.d. damage-cost shock (γ_t) to a TFP shock calibrated to match the same on-impact fall in the Solow residual.
- ► The damage shock yields larger, more persistent cycles and a hump-shaped Solow residual.
- ▶ A volatility ("risk") shock yields supply-side recession dynamics of similar magnitude but greater persistence than a level shock.

Welfare Comparison

$$E_0 \sum_{t=0}^{\infty} \beta^t U(C_t^w, N_t^w) = E_0 \sum_{t=0}^{\infty} \beta^t U((1-\lambda)C_t^{w/o}, N_t^{w/o})$$

where:

- Superscript w: benchmark economy with climate volatility risk.
- Superscript w/o: economy (1) without climate costs and (2) climate costs without risks.
- \triangleright λ : Permanent consumption loss.
- ▶ Households require a permanent consumption increase of:
 - $\lambda = 0.11\%$: to remain in the economy with climate externality.
 - $\,\diamond\,\,\lambda=0.09\%$: to remain in the economy with climate volatility risk.
- \Rightarrow More than four times the costs of business cycle documented by Lucas (1987).

Variance Decomposition

Table 5: Variance decomposition

Variable	ϵ^{σ}_t	ϵ_t^γ	$\epsilon_t^{a_0}$	$\epsilon_t^{a_{f}}$	$\epsilon_t^{a_g}$
С	53%	76%	24%	0%	0%
K	67%	67%	33%	0%	0%
1	51%	80%	20%	0%	0%
N	50%	79%	21%	0%	0%
Υ	52%	78%	22%	0%	0%
E_0	40%	63%	17%	7%	13%
E_f	28%	44%	9%	23%	21%
E_g	8%	12%	3%	3%	82%

Conclusions

- ► There is suggestive evidence that damage costs related to climate change exhibit time-varying volatility.
- ▶ We quantify the real effects of volatility shocks on the cost of climate change.
 - Our findings indicate that a climate volatility shock negatively impacts real macroeconomic variables.
 - We determine that the welfare costs of climate risks are more than four times the costs of business cycles documented by Lucas (1987).

Thank you!

Set of equilibrium equations - Households

$$\lambda_t = \left(C_t - \psi N_t^{\theta} X_t\right)^{-\sigma} + \mu_t \eta C_t^{\eta - 1} X_{t-1}^{1-\eta} \tag{2}$$

$$\mu_t = \beta \mathbb{E}_t \left[\mu_{t+1} C_{t+1}^{\eta} (1+\eta) X_t^{-\eta} \right] - \psi N_t^{\theta} \left(C_t - \psi N_t^{\theta} X_t \right)^{-\sigma}$$
(3)

$$\lambda_t w_t = \psi \theta N_t^{\theta-1} X_t \left(C_t - \psi N_t^{\theta} X_t \right)^{-\sigma} \tag{4}$$

$$\lambda_t = \beta \mathbb{E}_t[\lambda_{t+1}(1 + (r_{t+1}^b))] \tag{5}$$

$$\lambda_t q_t = \beta \mathbb{E}_t [\lambda_{t+1} \left(r_{t+1} + q_{t+1} (1 - \delta) \right)] \tag{6}$$

$$1 = q_t \left[1 - \frac{\Phi}{2} \left(\frac{I_t}{I_{l-1}} - 1 \right)^2 - \Phi \left(\frac{I_t}{I_{t-1}} - 1 \right) \frac{I_t}{I_{t-1}} \right]$$

$$+ \beta \mathbb{E}_t \left[\frac{\lambda_{t+1}}{\lambda_t} q_{t+1} \Phi \left(\frac{I_{t+1}}{I_t} - 1 \right) \left(\frac{I_{t+1}}{I_t} \right)^2 \right]$$

$$(7)$$

$$X_{t} = C_{t}^{\eta} X_{t-1}^{1-\eta} \tag{8}$$

$$K_{t+1} = \left[1 - \frac{\Phi}{2} \left(\frac{I_t}{I_{t-1}} - 1\right)^2\right] I_t + (1 - \delta)K_t \tag{9}$$

Back

Set of equilibrium equations - Final good firm

$$r_{t} = e^{-\gamma_{t}(S_{t} - \bar{S})} A_{0,t} \alpha K_{t}^{\alpha - 1} N_{0,t}^{1 - \alpha - \nu} \mathbf{E_{0,t}}^{\nu}$$
(10)

$$w_t = e^{-\gamma_t(S_t - \bar{S})} A_{0,t} K_t^{\alpha} (1 - \alpha - \nu) N_{0,t}^{-\alpha - \nu} \mathbf{E_{0,t}}^{\nu}$$
(11)

$$p_{f,t} = e^{-\gamma_t (S_t - \bar{S})} A_{0,t} K_t^{\alpha} N_{0,t}^{1-\alpha-\nu} \nu \mathbf{E}_{\mathbf{0},t}^{\nu-\rho} (1-\kappa) E_{f,t}^{\rho-1}$$
(12)

$$p_{g,t} = e^{-\gamma_t(S_t - \bar{S})} A_{0,t} K_t^{\alpha} N_{0,t}^{1-\alpha-\nu} \nu \mathbf{E}_{0,t}^{\nu-\rho} \kappa E_{g,t}^{\rho-1}$$
(13)

$$Y_{t} = e^{-\gamma_{t}(S_{t} - \bar{S})} A_{0,t} K_{t}^{\alpha} N_{0,t}^{(1-\alpha-\nu)} \mathbf{E}_{\mathbf{0},t}^{\nu}$$
(14)

$$\mathbf{E}_{0,t} = (\kappa(E_{g,t})^{\rho} + (1 - \kappa)(E_{f,t})^{\rho})^{1/\rho}$$
(15)

Back

Set of equilibrium equations - Energy firms

► Green energy producer

$$\rho_{g,t} = \frac{w_t}{A_{g,t}}$$

$$E_{g,t} = A_{g,t} N_{g,t}$$
(16)

$$E_{g,t} = A_{g,t} N_{g,t} \tag{17}$$

► Fossil energy producer

$$p_{f,t} = \frac{w_t}{A_{f,t}}$$

$$E_{f,t} = A_{f,t} N_{f,t}$$
(18)

$$E_{f,t} = A_{f,t} N_{f,t} \tag{19}$$

Set of equilibrium equations - Market clearing conditions and Definitions

$$Y_t = C_t + X_t + \bar{G}$$
 (20)
 $N_t = N_{0,t} + N_{f,t} + N_{g,t}$ (21)

$$S_{t} - \bar{S} = \phi_{0} \xi E_{f,t} + (1 - \phi)(S_{t-1} - \bar{S})$$

$$D_{t}(S_{t}) = 1 - e^{-\gamma_{t}(S_{t} - \bar{S})}$$
(22)

$$(cost/Y)_{t} = \frac{D_{t}(S_{t})A_{0,t}K_{t}^{\alpha}N_{0,t}^{(1-\alpha-\nu)}\mathbf{E_{0,t}}^{\nu}}{Y_{t}}$$
(24)

$$SR_t = e^{-\gamma_t(S_t - \bar{S})} A_{0,t} \tag{25}$$

Set of equilibrium equations - Exogenous process

$$\log(A_{0,t}) = (1 - \rho_{a_0}) \log(\bar{A}_0) + \rho_{a_0} \log A_{0,t-1} + \sigma^A \epsilon_t^{a_0}, \quad \epsilon_t^{a_0} \sim N(0,1)$$

$$\log(A_{f,t}) = (1 - \rho_{a_f}) \log(\bar{A}_f) + \rho_{a_f} \log A_{f,t-1} + \sigma^{A_f} \epsilon_t^{a_f}, \quad \epsilon_t^{a_f} \sim N(0,1)$$

$$\log(A_{g,t}) = (1 - \rho_{a_g}) \log(\bar{A}_g) + \rho_{a_g} \log A_{g,t-1} + \sigma^{A_g} \epsilon_t^{a_g}, \quad \epsilon_t^{a_g} \sim N(0,1)$$

$$\log(\gamma_t) = (1 - \rho_{\gamma}) \log(\bar{\gamma}) + \rho_{\gamma} \log(\gamma_{t-1}) + \sigma_t^{\gamma} \epsilon_t^{\gamma}, \quad \epsilon_t^{\gamma} \sim N(0,1)$$

$$\log(\sigma_t) = (1 - \rho_{\sigma}) \log(\bar{\sigma}) + \rho_{\sigma} \log(\sigma_{t-1}) + \sigma^{\sigma} \epsilon_t^{\gamma}, \quad \epsilon_t^{\sigma} \sim N(0,1)$$
(26)